
Automating Software
Debugging: An Approach

to Travel Back to The Root
Cause of Your Bug

Presenter: Hongshu Wang

Introduction

Project
Objectives

• Address the problem of missing data dependencies
in the current tools

• Exploration of Potential Approaches

• Solution Design and Implementation

• Experiment Design and Conduction

Data Dependency Recovery

• Accomplish a research work that automates the
debugging process through a time-travelling
approach

• Theory Refinement

• Experiment Conduction

Contributions to DebugPilot

Background

Back-tracking: Agrawal et al., 1993

• Working backwards from the fault-revealing step.

• Dynamic slicing can identify the data and control dominance relations of an
execution step.

Background

Tools

• Common step: One or more execution traces with
causality relations are generated.

• Microbat

• The users can search for the root cause by
providing feedback to the steps.

• Tregression

• The buggy and fixed versions of traces are
aligned.

• DebugPilot

• A possible debugging process is generated
based on the suspiciousness.

Trace
Generation

Microbat Tregression DebugPilot

Data Dependency
Recovery

Definitions
• Data Domination

• Data Dominator: 𝑠𝑖

• Data Dominatee: 𝑠𝑗

• Data Dependency: between 𝑠𝑖 and 𝑠𝑗

• Critical Variable: 𝑣

Problem Statement

• Existing research works assume that the
collected data flows are complete.

• Missing critical variables -> Missing data
dependencies

• Two sources of missing critical variables
during trace generation:

• Incomplete Instrumentation

• Partial Recording of the Variables

Trace
Generation

Microbat Tregression DebugPilot

Problem Statement

• Missing data dependencies can break
the path from 𝑠𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑟𝑒𝑣𝑒𝑎𝑙𝑖𝑛𝑔 to
𝑠𝑟𝑜𝑜𝑡_𝑐𝑎𝑢𝑠𝑒.

• Leads to failure in locating the root
cause.

Aim: Recover the missing data
dependencies through recovering the
critical variables.

Motivating Example

Potential
Solutions

• Approach: compares variable values before and after method
invocation

• Limitations: needs to record the variable values before method
invocation

Comparison of Variables

• Approach: applies traditional data flow analysis on source code

• Limitations:

• needs to construct extra data structures like AST or PDG

• time and space complexities are similar to dynamic program analysis

Data Flow Analysis

• Approach: instruments code in third party libraries

• Limitations:

• runtime overhead for executing the inserted instructions

• infinite loops during execution

Enhanced Instrumentation

LLM Leveraged Data Dependency Recovery:
Solution Overview

•Query Request
Generator

1. Prompt
Engineering

•Querier 2. Querying

•Query Response
Processor

3. Variable
Mapping

Related Work

• Capability of LLMs on understanding code syntax and semantics: Ma et al., 2023

• Examined the performance of LLMs on completing a series of code analysis tasks,
including data dependency analysis.

• Given a segment of code, the task is to determine whether two variables are “data-
dependent”.

• A large number of queries is required to build a complete data flow in a program.

Solution Version 1

Prompt Engineering (V1)

• Using LLM as a classifier

• Common data structures in Java use an internal array to store the
elements

• Query Response Format:
• < 𝑚𝑒𝑡ℎ𝑜𝑑 𝑡𝑦𝑝𝑒 >< 𝑚𝑒𝑡ℎ𝑜𝑑 𝑎𝑐𝑡𝑖𝑜𝑛 >< 𝑛𝑎𝑚𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑟𝑟𝑎𝑦 >< 𝑖𝑛𝑑𝑒𝑥 >

• method type: get / set

• method action: add / remove / replace

• index: start / end / all / index / key

• e.g. ArrayList<T> # add(T object)
• < 𝑠𝑒𝑡 >< 𝑎𝑑𝑑 >< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 >< 𝑒𝑛𝑑 >

1. Prompt
Engineering

2. Querying

3. Variable
Mapping

Solution Version 1

Prompt Format (V1)

“

Return in the following format: {Query Response format}

{Explanation of meanings of the tags in the response}

For example:

{method 1} with signature {signature 1}:<response 1>

{method 2} with signature {signature 2}:<response 2>

…

Then {method queried} with signature {signature queried}:

”

Background

Examples

Question

Solution Version 1

1. Prompt
Engineering

2. Querying

3. Variable
Mapping

Variable Mapping (V1)

• V1 assumes that each data structure contains:

• an internal array

• a field named “size”

ArrayList

elementData

elementData[0]

elementData[1]

...size

Solution Version 1

Query Response Format:
< 𝑚𝑒𝑡ℎ𝑜𝑑 𝑡𝑦𝑝𝑒 >< 𝑚𝑒𝑡ℎ𝑜𝑑 𝑎𝑐𝑡𝑖𝑜𝑛 >< 𝑛𝑎𝑚𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑟𝑟𝑎𝑦 >< 𝑖𝑛𝑑𝑒𝑥 >

method type

get

set

internal array

<index> : all
record array[i]

for all i

otherwise
record

array[index]

size

action is add /
remove

record size

action is
replace

ArrayList

elementData

elementData[0]

elementData[1]

...size

Variable Mapping (V1)

Solution Version 1
Limitations

1. Some data structures do not follow the
structure specified in Prompt V1

• e.g. LinkedList contains Nodes instead
of an array

2. Sometimes index cannot be inferred
correctly

• e.g. index in PriorityQueue cannot be
inferred

3. Static methods might modify multiple
input variables

• Classifier only works on one variable

Solution Version 2

Prompt Engineering (V2)

• Using LLM as a predictor

• Input: execution information

• code

• method signature

• variable values

• Output: critical variables

• Input Variable Format:

• {name:var_name, type:var_type, value:var_value}

• var_value can be further expanded

• Output Variable Format:
• < 𝑙𝑎𝑦𝑒𝑟 1 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒#𝑙𝑎𝑦𝑒𝑟 2 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒# … #𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒 >

1. Prompt
Engineering

2. Querying

3. Variable
Mapping

Solution Version 2

Prompt Format (V2)

Let {variable format} represent a variable. Return the fields in var_value that are

modified. In your response, do not explain and return strictly in this format: <response

format>

e.g., Given variable {example variable} After calling {code} once, the following fields of

{variable name} are modified:<critical variable 1 name>;<critical variable 2 name>;…

Then given variables {queried variable 1} {queried variable 2} … After calling {code}

once, the following fields of {queried variable 1 name}, {queried variable 2 name}, …

are modified:

Background

Examples

Question

Solution Version 2

a

b1

c1

c2

c3

d1

d2

c4

b2

b3

c5

c6

Prompt Engineering (V2)Tree Representation of Variable

Query Request Format:

{
 name: a, type: a_type, value: [
 {name: b1, type: b1_type, value: b1_value},
 {name: b2, type: b2_type, value: b2_value},
 {name: b3, type: b3_type, value: b3_value}
]
}

Solution Version 2

a

b1

c1

c2

c3

d1

d2

c4

b2

b3

c5

c6

Variable Mapping (V2)

Tree Representation of Variable

Query Response Format:

< 𝑎#𝑏1#𝑐2 > ; < 𝑎#𝑏1#𝑐3#𝑑2 > ; < 𝑎#𝑏2 >

Performance on Motivating Example

Evaluation

Dataset

• Defects4J

• 841 programs in total

• 114 programs
• Trace can be generated

• Microbat cannot locate the root cause

Benchmark

• Hardcoded responses in the format of prompt V1

• 4 representative data structures:
• ArrayList

• HashMap

• HashSet

• Queue

• 34 setter methods

Performance of Prompt V1 and V2 compared to benchmark

Performance of Prompt V1 and V2 compared to benchmark

Debugging

Success

Trace Generation

Success

Percentage of

Success

Average Trace

Generation Time (s)

Benchmark 19 93 20.43% 19.00

Prompt V1 31 88 35.23% 29.21

Prompt V2 33 65 50.77% 128.44

Microbat Experiment Result with Data Dependency Recovery

Debugging

Success

Trace Generation

Success

Percentage of

Success

Average Trace

Generation Time (s)

Benchmark 12 65 18.46% 15.65

Prompt V1 22 65 33.85% 15.20

Prompt V2 33 65 50.77% 128.44

Subset of Microbat Experiment Result with Data Dependency Recovery

Performance of Prompt V2 for n=1 and n=3

Debugging

Success

Trace Generation

Success

Percentage of

Success

Average Trace

Generation Time (s)

n=1 30 88 34.09% 117.15

n=3 33 65 50.77% 128.44

Microbat Experiment Result with Data Dependency

Recovery V2 (n=1 and n=3)

Conclusions

Limitations and Future Research

Limitation: Runtime Overhead

• Version 2 times out due to the runtime overhead for querying ChatGPT

Future Research Directions

1. Reduce the number of queries

• On-demand dependency recovery

• Only send queries when a variable is selected for data slicing

2. Reduce the query time

• Use a local deep learning model instead of ChatGPT

Limitations and Future Research

Limitation: Recovery Rate

• The debugging success rate is 50.77%

Future Research Directions

1. Include more execution information in the prompt

• e.g. Context in the form of source code

• Need to determine the scope of the context

Thank You

	Slide 1: Automating Software Debugging: An Approach to Travel Back to The Root Cause of Your Bug
	Slide 2: Introduction
	Slide 3: Project Objectives
	Slide 4: Background
	Slide 5: Background
	Slide 6: Data Dependency Recovery
	Slide 7: Definitions
	Slide 8: Problem Statement
	Slide 9: Problem Statement
	Slide 10: Motivating Example
	Slide 11: Potential Solutions
	Slide 12: LLM Leveraged Data Dependency Recovery: Solution Overview
	Slide 13: Related Work
	Slide 14: Solution Version 1
	Slide 15: Solution Version 1
	Slide 16: Solution Version 1
	Slide 17: Solution Version 1
	Slide 18: Solution Version 1 Limitations
	Slide 19: Solution Version 2
	Slide 20: Solution Version 2
	Slide 21: Solution Version 2
	Slide 22: Solution Version 2
	Slide 23: Performance on Motivating Example
	Slide 24: Evaluation
	Slide 25: Performance of Prompt V1 and V2 compared to benchmark
	Slide 26: Performance of Prompt V1 and V2 compared to benchmark
	Slide 27: Performance of Prompt V2 for n=1 and n=3
	Slide 28: Conclusions
	Slide 29: Limitations and Future Research
	Slide 30: Limitations and Future Research
	Slide 31: Thank You

