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Introduction



Project 
Objectives

• Address the problem of missing data dependencies 
in the current tools

• Exploration of Potential Approaches

• Solution Design and Implementation

• Experiment Design and Conduction

Data Dependency Recovery

• Accomplish a research work that automates the 
debugging process through a time-travelling 
approach

• Theory Refinement

• Experiment Conduction

Contributions to DebugPilot



Background

Back-tracking: Agrawal et al., 1993

• Working backwards from the fault-revealing step. 

• Dynamic slicing can identify the data and control dominance relations of an 
execution step.



Background

Tools

• Common step: One or more execution traces with 
causality relations are generated.

• Microbat

• The users can search for the root cause by 
providing feedback to the steps.

• Tregression

• The buggy and fixed versions of traces are 
aligned.

• DebugPilot

• A possible debugging process is generated 
based on the suspiciousness.

Trace 
Generation

Microbat Tregression DebugPilot



Data Dependency 
Recovery



Definitions
• Data Domination

• Data Dominator: 𝑠𝑖

• Data Dominatee: 𝑠𝑗

• Data Dependency: between 𝑠𝑖 and 𝑠𝑗

• Critical Variable: 𝑣



Problem Statement

• Existing research works assume that the 
collected data flows are complete.

• Missing critical variables -> Missing data 
dependencies

• Two sources of missing critical variables 
during trace generation:

• Incomplete Instrumentation

• Partial Recording of the Variables

Trace 
Generation

Microbat Tregression DebugPilot



Problem Statement

• Missing data dependencies can break 
the path from 𝑠𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑟𝑒𝑣𝑒𝑎𝑙𝑖𝑛𝑔 to 
𝑠𝑟𝑜𝑜𝑡_𝑐𝑎𝑢𝑠𝑒.

• Leads to failure in locating the root 
cause.

Aim: Recover the missing data 
dependencies through recovering the 
critical variables.



Motivating Example



Potential 
Solutions

• Approach: compares variable values before and after method 
invocation

• Limitations: needs to record the variable values before method 
invocation

Comparison of Variables

• Approach: applies traditional data flow analysis on source code

• Limitations:

• needs to construct extra data structures like AST or PDG

• time and space complexities are similar to dynamic program analysis

Data Flow Analysis

• Approach: instruments code in third party libraries

• Limitations:

• runtime overhead for executing the inserted instructions

• infinite loops during execution

Enhanced Instrumentation



LLM Leveraged Data Dependency Recovery:
Solution Overview

•Query Request 
Generator

1. Prompt 
Engineering

•Querier 2. Querying

•Query Response 
Processor

3. Variable 
Mapping



Related Work

• Capability of LLMs on understanding code syntax and semantics: Ma et al., 2023

• Examined the performance of LLMs on completing a series of code analysis tasks, 
including data dependency analysis.

• Given a segment of code, the task is to determine whether two variables are “data-
dependent”.

• A large number of queries is required to build a complete data flow in a program.



Solution Version 1

Prompt Engineering (V1)

• Using LLM as a classifier

• Common data structures in Java use an internal array to store the 
elements

• Query Response Format: 
• < 𝑚𝑒𝑡ℎ𝑜𝑑 𝑡𝑦𝑝𝑒 >< 𝑚𝑒𝑡ℎ𝑜𝑑 𝑎𝑐𝑡𝑖𝑜𝑛 >< 𝑛𝑎𝑚𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑟𝑟𝑎𝑦 >< 𝑖𝑛𝑑𝑒𝑥 >

• method type: get / set

• method action: add / remove / replace

• index: start / end / all / index / key

• e.g. ArrayList<T> # add(T object)
• < 𝑠𝑒𝑡 >< 𝑎𝑑𝑑 >< 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 >< 𝑒𝑛𝑑 > 

1. Prompt 
Engineering

2. Querying

3. Variable 
Mapping



Solution Version 1

Prompt Format (V1)

“

Return in the following format: {Query Response format}

{Explanation of meanings of the tags in the response}

For example:

{method 1} with signature {signature 1}:<response 1>

{method 2} with signature {signature 2}:<response 2>

…

Then {method queried} with signature {signature queried}:

”

Background

Examples

Question



Solution Version 1

1. Prompt 
Engineering

2. Querying

3. Variable 
Mapping

Variable Mapping (V1)

• V1 assumes that each data structure contains:

• an internal array

• a field named “size”

ArrayList

elementData

elementData[0]

elementData[1]

...size



Solution Version 1

Query Response Format: 
< 𝑚𝑒𝑡ℎ𝑜𝑑 𝑡𝑦𝑝𝑒 >< 𝑚𝑒𝑡ℎ𝑜𝑑 𝑎𝑐𝑡𝑖𝑜𝑛 >< 𝑛𝑎𝑚𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑟𝑟𝑎𝑦 >< 𝑖𝑛𝑑𝑒𝑥 >

method type

get

set

internal array

<index> : all
record array[i] 

for all i

otherwise
record 

array[index]

size

action is add / 
remove

record size

action is 
replace

ArrayList

elementData

elementData[0]

elementData[1]

...size

Variable Mapping (V1)



Solution Version 1
Limitations

1. Some data structures do not follow the 
structure specified in Prompt V1

• e.g. LinkedList contains Nodes instead 
of an array

2. Sometimes index cannot be inferred 
correctly

• e.g. index in PriorityQueue cannot be 
inferred

3. Static methods might modify multiple 
input variables

• Classifier only works on one variable



Solution Version 2

Prompt Engineering (V2)

• Using LLM as a predictor

• Input: execution information

• code

• method signature

• variable values

• Output: critical variables

• Input Variable Format:

• {name:var_name, type:var_type, value:var_value}

• var_value can be further expanded

• Output Variable Format:
• < 𝑙𝑎𝑦𝑒𝑟 1 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒#𝑙𝑎𝑦𝑒𝑟 2 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒# … #𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒 > 

1. Prompt 
Engineering

2. Querying

3. Variable 
Mapping



Solution Version 2

Prompt Format (V2)

Let {variable format} represent a variable. Return the fields in var_value that are 

modified. In your response, do not explain and return strictly in this format: <response 

format>

e.g., Given variable {example variable} After calling {code} once, the following fields of 

{variable name} are modified:<critical variable 1 name>;<critical variable 2 name>;…

Then given variables {queried variable 1} {queried variable 2} … After calling {code} 

once, the following fields of {queried variable 1 name}, {queried variable 2 name}, … 

are modified:

Background

Examples

Question



Solution Version 2

a

b1

c1

c2

c3

d1

d2

c4

b2

b3

c5

c6

Prompt Engineering (V2)Tree Representation of Variable

Query Request Format:

{
  name: a, type: a_type, value: [
    {name: b1, type: b1_type, value: b1_value},
    {name: b2, type: b2_type, value: b2_value},
    {name: b3, type: b3_type, value: b3_value}
  ]
}



Solution Version 2

a

b1

c1

c2

c3

d1

d2

c4

b2

b3

c5

c6

Variable Mapping (V2)

Tree Representation of Variable

Query Response Format: 

< 𝑎#𝑏1#𝑐2 > ; < 𝑎#𝑏1#𝑐3#𝑑2 > ; < 𝑎#𝑏2 >



Performance on Motivating Example



Evaluation

Dataset

• Defects4J

• 841 programs in total

• 114 programs
• Trace can be generated

• Microbat cannot locate the root cause

Benchmark

• Hardcoded responses in the format of prompt V1

• 4 representative data structures:
• ArrayList

• HashMap

• HashSet

• Queue

• 34 setter methods



Performance of Prompt V1 and V2 compared to benchmark



Performance of Prompt V1 and V2 compared to benchmark

Debugging 

Success

Trace Generation 

Success

Percentage of 

Success

Average Trace 

Generation Time (s)

Benchmark 19 93 20.43% 19.00

Prompt V1 31 88 35.23% 29.21

Prompt V2 33 65 50.77% 128.44

Microbat Experiment Result with Data Dependency Recovery

Debugging 

Success

Trace Generation 

Success

Percentage of 

Success

Average Trace 

Generation Time (s)

Benchmark 12 65 18.46% 15.65

Prompt V1 22 65 33.85% 15.20

Prompt V2 33 65 50.77% 128.44

Subset of Microbat Experiment Result with Data Dependency Recovery



Performance of Prompt V2 for n=1 and n=3

Debugging 

Success

Trace Generation 

Success

Percentage of 

Success

Average Trace 

Generation Time (s)

n=1 30 88 34.09% 117.15

n=3 33 65 50.77% 128.44

Microbat Experiment Result with Data Dependency 

Recovery V2 (n=1 and n=3)



Conclusions



Limitations and Future Research

Limitation: Runtime Overhead

• Version 2 times out due to the runtime overhead for querying ChatGPT

Future Research Directions

1. Reduce the number of queries

• On-demand dependency recovery

• Only send queries when a variable is selected for data slicing

2. Reduce the query time

• Use a local deep learning model instead of ChatGPT



Limitations and Future Research

Limitation: Recovery Rate

• The debugging success rate is 50.77%

Future Research Directions

1. Include more execution information in the prompt

• e.g. Context in the form of source code

• Need to determine the scope of the context



Thank You
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