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Abstract 

 
Software debugging is known to be a tedious, challenging, yet ineluctable process. This 

project aims to accomplish a research work that automates software debugging through time-

traveling approach. Various existing approaches such as feedback-based debugging and 

probabilistic inference were studied. In these approaches, either excessive human 

intervention or computational resources is required, limiting their efficiency in minimizing 

debugging efforts. To overcome these issues, a solution called DebugPilot was proposed. The 

contributions of this Final Year Project are on the IO Detection for simulation experiments 

and formula refinement. 

 

In addition, this project identifies and aims to solve the problem of missing data 

dependencies. Data dependency analysis is a crucial step in code analysis tasks. Various 

research has been conducted with the assumption of the availability of a complete data flow. 

However, in practice, this assumption might not always be true, and there is a need for a 

technique to ensure the completeness of data flows. This project aims to address the 

incomplete data flow problem in backtracking-based software debugging by developing a 

technique to recover missing data dependencies. By solving this problem, the number of 

usable programs in Defects4J is increased. Experiments are conducted to evaluate the 

effectiveness of the proposed solution, and limitations are identified to provide insights into 

directions of future research. 

 

Subject Descriptors 

- Software and its engineering > Software creation and management > Software 

verification and validation > Software defect analysis > Software testing and 

debugging 

 

Keywords 

Fault Localization, Time-Travelling Debugging, Data Flow Analysis 
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1 Introduction 

1.1 Project Objectives 
Software debugging is known to be tedious and challenging, especially in complex software 

systems, yet it is an ineluctable process in software development. This project aims to 

accomplish a research work that addresses this problem by automating the debugging process 

through a time-travelling approach. The contribution of this project should involve different 

aspects of the research work, such as theory refinement, experiment design, conduction, and 

enhancement. 

 

In addition, this project identifies and aims to solve the problem of missing data 

dependencies. Data dependency analysis is a crucial step in code analysis tasks. Various 

research has been conducted with the assumption of the availability of a complete data flow 

(Lin et al., 2017; Wang et al., 2019; Guo et al., 2020; Ren et al., 2020; Wong et al., 2023). 

However, in practice, this assumption might not always be true, and there is a need for a 

technique to ensure the completeness of data flows. This project aims to address the 

incomplete data flow problem in backtracking-based software debugging by developing a 

technique to recover missing data dependencies. 

 

1.2 Literature Review 

1.2.1 Backtracking Based Software Debugging 

Backtracking involves working backwards from the fault-revealing step. A technique called 

dynamic slicing can identify the data and control dominance relations relevant to a variable 

or expression (Agrawal et al., 1993), which helps in searching of the root cause in 

backtracking.  

 

In 2017, Lin et al. proposed a feedback-based debugging approach, which aims to assist fault 

localization given a buggy program. A tool called Microbat was developed to support this 

work. In this approach, an execution trace with causality relations (i.e., data and control 

dominance relations) is generated given the buggy program. The developers are allowed to 

provide feedback to the trace steps, which serve as a direction of searching of the root cause 

along the trace. This approach has a high success rate of 92.8% in fault localization (Lin et 

al., 2017). However, this work has a limitation that the number of requests for feedback 
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might be enormous, especially for complex programs with large numbers of iterations. In 

addition, wrong feedback might be given, but the handling is not robust enough.  

 

Another work proposed by Xu et al. in 2018 attempted to reduce the human intervention by a 

probabilistic inference approach. Each executed statement is modelled as a conditional 

probability distribution. Information including program semantics and domain knowledge are 

captured by these distributions. The probability of each step being the root cause can then be 

calculated. One drawback of this approach is the large amount of time and resources required, 

which limits its effectiveness in enhancing the efficiency of the debugging process. 

 

In 2024, Wu, S. and Yang, J. et al. proposed Devin and SWE-agent respectively. Both tools 

utilize natural language processing models to achieve automated debugging. Similar to the 

existing work, both tools require various levels of feedback as a guidance of the debugging 

process. For Devin, the feedback is from human, while SWE-agent predicts feedback 

automatically. Different from the existing work, the feedback in Devin and SWE-agent are in 

the form of natural language. Thus, these AI assisted debugging tools have a relatively 

shallow learning curve. However, the debugging approach adopted in these tools does not 

involve collecting execution traces. As a result, the debugging process usually requires 

executing the program multiple times, which is expensive when the program consumes a 

large amount of computational resources. 

 

1.2.2 Data Dependency Analysis Leveraging Large Language Models 

Since the deployment of large language models (LLMs) such as ChatGPT (OpenAI, 2022), 

research work on software engineering that incorporates the capability of LLMs has been 

conducted extensively (Fan et al., 2023). 

 

In 2023, Ma et al. studied the capability of LLMs on understanding code syntax and 

semantics. The performance of LLMs on completing a series of code analysis tasks, including 

data dependency analysis, was examined. Specifically, given a segment of code, the task is to 

determine whether two variables are “data-dependent”. It was found that compared to 

CodeLLama and StarCoder, ChatGPT has higher F1 score. When comparing ChatGPT 4 with 

ChatGPT 3.5, it was found that they have similar performance. While this work has provided 

an approach of utilizing LLMs as classifiers, a large number of queries is required to build a 



 3 

complete data flow in a program. This is because this approach will query LLMs for each 

pair of variables in the program. 

 

1.3 Overview of Microbat 
1.3.1 Introduction 

Microbat is a feedback-based debugging tool that was proposed in 2017 by Lin et al. Based 

on this tool, Tregression (Wang et al., 2019) and DebugPilot (Wong et al., 2023) were built. 

The tools share the same trace generation algorithm. Improvement on the trace generation 

would benefit all the tools. The contributions of the Final Year Project in trace generation 

have been described in Section 2. 

 

1.3.2 Trace Generation 

To generate an execution trace, execution information first needs to be collected. This is 

achieved by a technique called Java Instrumentation (java.lang.instrument package), which 

modifies the bytecode executed without modifying the source code. The execution 

information such as variable values and execution sequence can be collected by injecting 

instructions into the bytecode. After this, an execution trace can be generated. 

 

1.4 Overview of DebugPilot 

1.4.1 Introduction 

To address the problems of excessive human intervention during debugging and low 

tolerance of false positives in a more computationally efficient manner, a bug-locating 

solution called DebugPilot was proposed (Wong et al., 2023). The contributions of the Final 

Year Project in this research work have been described in Section 3. 

 

1.4.2 Debugging Plan 

In this approach, a possible debugging process of the given buggy program is simulated and 

provided as the debugging plan. DebugPilot is an extension of the traditional time-travelling 

approach. Therefore, the debugging plan is composed of a series of execution steps from the 

fault-revealing step to the root cause. The construction involves choosing the most suspicious 

step until the predicted root cause is reached. The debugging plan can then be refined based 

on human intervention, such as correcting predicted feedback. The updated debugging plan 
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predicts the root cause with higher accuracy because of DebugPilot’s capability of learning 

from the developer’s knowledge. 

 

1.4.3 Computation of Suspiciousness 

A heuristic called suspiciousness is introduced to determine the direction of search. 

Suspiciousness is a measure of the extent to which a step, variable or relation is likely to lead 

to the root cause. The suspiciousness of steps is initialized based on the computational cost. 

After this, the suspiciousness of variables and relations can be calculated based on the 

suspiciousness that has been computed. A debugging plan can then be generated. Similarly, 

the suspiciousness scores are updated upon feedback correction. 
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2 Data Dependency Recovery 

2.1 Definitions 
2.1.1 Notations 

𝒔𝒊: a step on an execution trace with order 𝑖. 

𝒗: a variable involved in the execution of the program. 

𝒗. 𝒇: a field in variable 𝑣. A field is also a variable. 

𝒓(𝒔𝒊): the set of read variables at step 𝑠𝑖. 

𝒘(𝒔𝒊): the set of written variables at step 𝑠𝑖. 

𝑫𝑫𝒗(𝒔𝒋, 𝒔𝒊): the data dependency through variable 𝑣 between step 𝑠𝑗 and 𝑠𝑖, where  

𝑣 ∈ 𝑟(𝑠𝑗)  ∩  𝑣 ∈ 𝑤(𝑠𝑖)  ∩  𝑣 ∉ 𝑤(𝑠𝑘) 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑘 < 𝑗 

 

2.1.2 Read and Written Variables 

Read variable: Variable 𝑣 is said to be a read variable of step 𝑠 if its value is read and used at 

this step. 

Written variable: Variable 𝑣 is said to be a written variable of step 𝑠 if it is assigned a value 

at this step. 

 

2.1.3 Data Domination 

 
Figure 1. Data Dependency between Two Steps 

Consider two steps 𝑠𝑖 and 𝑠𝑗 on an execution trace, where 𝑖 < 𝑗, i.e., 𝑠𝑖 is executed before 𝑠𝑗. 

Let 𝑣 be a variable that is read by step 𝑠𝑗 and written by step 𝑠𝑖, and 𝑣 is not written by any 

step 𝑠𝑘 between 𝑠𝑖 and 𝑠𝑗. That is, 

𝑣 ∈ 𝑟(𝑠𝑗)  ∩  𝑣 ∈ 𝑤(𝑠𝑖)  ∩  𝑣 ∉ 𝑤(𝑠𝑘) 𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑘 < 𝑗 

The relationships between 𝑠𝑖, 𝑠𝑗 and 𝑣 are illustrated in Figure 1. 
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Data Dominator: 𝑠𝑖 is said to be the data dominator of 𝑠𝑗 regarding variable 𝑣. 

Data Dominatee: 𝑠𝑗 is said to be the data dominatee of 𝑠𝑖 regarding variable 𝑣. 

Data Dependency: there exists a data dependency between 𝑠𝑗 and 𝑠𝑖 through variable 𝑣. 

 

2.1.4 Critical Variable 

Consider the scenario when a variable 𝑣 is not written by a step 𝑠, but there exists a variable 

𝑣. 𝑓, an internal field of 𝑣, that is written by step 𝑠. Then 𝑣. 𝑓 is defined to be the critical 

variable of 𝑣 at step 𝑠. That is, ∃ variable 𝑣 with field 𝑣. 𝑓, at step 𝑠, 𝑣. 𝑓 is critical iff 

𝑣 ∉ 𝑤(𝑠)  ∩  𝑣. 𝑓 ∈ 𝑤(𝑠) 

 

2.2 Problem Statement 
2.2.1 Background 

Java Instrumentation Scope 

The first step in backtracking-based debugging is execution trace generation. This procedure 

is equivalent to setting a breakpoint at each execution step and recording the execution 

information. In Microbat and DebugPilot, the trace is collected through Java instrumentation. 

Due to time and memory constraints, only the program of interest is instrumented, any JDK 

classes and third-party libraries are skipped during instrumentation. Therefore, the execution 

information within the libraries is missing.  

 

Selective Variable Recording 

On a generated trace, instead of referring to variables by addresses, the values of variables are 

recorded at each step as part of the execution information. In practice, variables with 

composite types usually involve multiple fields, which could be further expanded, and the 

memory consumption increases exponentially with the number of layers of variables 

recorded. As a result, it is infeasible to duplicate variables completely during trace 

generation. Instead, only the first few layers of fields within a variable are recorded onto the 

trace. 

 

2.2.2 Data Dependency Missing Problem 

Let 𝑠𝑟𝑜𝑜𝑡_𝑐𝑎𝑢𝑠𝑒 and 𝑠𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑟𝑒𝑣𝑒𝑎𝑙𝑖𝑛𝑔 represent the root cause step and the problem revealing 

step in a buggy program. The backtracking-based debugging approach starts from 

𝑠𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑟𝑒𝑣𝑒𝑎𝑙𝑖𝑛𝑔  and searches for 𝑠𝑟𝑜𝑜𝑡_𝑐𝑎𝑢𝑠𝑒 through the dynamic slicing algorithm 
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(Agrawal et al., 1993). The searching process uses execution steps as nodes, data and control 

dependencies as edges. As illustrated in Figure 2, missing data dependencies can break the 

path from 𝑠𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑟𝑒𝑣𝑒𝑎𝑙𝑖𝑛𝑔  to 𝑠𝑟𝑜𝑜𝑡_𝑐𝑎𝑢𝑠𝑒 , and consequently lead to failure in locating the 

root cause. 

 
Figure 2. Data Dependency Missing Problem 

Both incomplete instrumentation and partial recording of variable information serve as 

sources of the missing data dependency problem. 

 

Incomplete Instrumentation 

Since classes in third-party libraries are not instrumented, the execution information of 

library method invocation is not recorded. Consequently, the data dependencies relevant to 

these method invocations are missing. 

 

In Example 1, since ArrayList is a Java built-in class, it is not instrumented. The execution 

details of the 𝑎𝑑𝑑 and 𝑔𝑒𝑡 methods are not recorded, and the method invocations are 

represented as one step each. Assume the number of variable layers is 1, the expected read 

and written variables at each step are shown in Table 1. There exists a data dependency 

𝐷𝐷𝑙1.𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0](𝑠3, 𝑠2), which allows the user to track the most recent step before 𝑠3 that 

writes 𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0]. However, according to the program, there is no direct write 

operation at step 𝑠2 and 𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] ∉ 𝑤(𝑠2). This violates the definition of 

𝐷𝐷𝑙1.𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0](𝑠3, 𝑠2), so this data dependency is missing in the generated trace.  
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Example 1. Data Dependency Missing Example 

 
 𝒓(𝒔) 𝒘(𝒔) 

𝒔𝟏 𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 "new ArrayList <> ( )" 𝑙1 

𝒔𝟐 𝑙1 𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] 

𝑙1. 𝑠𝑖𝑧𝑒 

𝒔𝟑 𝑙1 𝑠 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 “l1. get(0)" → 𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] 

Note: variables shaded in grey are not recorded on the trace. 

Table 1. Read and Written Variables in Example 1 (Number of Variable Layers: 1) 

 
Partial Recording of Variable Information 

During trace generation, only the first few layers of fields within a variable are recorded. 

With limited information about the variables available, data dependency of the inner fields of 

variables are missing on the trace. 

 

Consider the same example with the assumption that the number of variable layers is 2 and 

the 𝑤(𝑠2) has been captured. The expected read and written variables at each step are shown 

in Table 2. One of the data dependencies is 𝐷𝐷𝑙1.𝑠𝑖𝑧𝑒(𝑠3, 𝑠2), following which enables a user 

to track the most recent step before 𝑠3 that adds element(s) to or removes element(s) from 𝑙1. 

However, if the user decides to generate trace with one layer of variables, this dependency 

doesn’t exist. This is because when one layer is considered, 𝑙1. 𝑠𝑖𝑧𝑒 ∉ 𝑟(𝑠3), which violates 

the definition of 𝐷𝐷𝑙1.𝑠𝑖𝑧𝑒(𝑠3, 𝑠2). 

 

 

 

 

 

 

 

 

𝒔𝟏 ArrayList < String >  l1 =  new ArrayList <> ( ); 

𝒔𝟐 l1. add(“s”);  
𝒔𝟑 String s =  l1. get(0); 
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 𝒓(𝒔) 𝒘(𝒔) 

𝒔𝟏 𝑙′ * 𝑙1 

𝑙′. 𝑠𝑖𝑧𝑒 𝑙1. 𝑠𝑖𝑧𝑒 

𝑙′ . 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] 𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] 

… … 

𝒔𝟐 𝑙1 𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] 

𝑙1. 𝑠𝑖𝑧𝑒 

𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] 𝑙1. 𝑠𝑖𝑧𝑒 

… 

𝒔𝟑 𝑙1 𝑠 

𝑙1. 𝑠𝑖𝑧𝑒 

𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] 

… 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 “l1. get(0)" → 𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] 

Note: variables shaded in grey are not recorded on the trace. 

*: 𝑙′ = 𝑟𝑒𝑡𝑢𝑟𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 "𝑛𝑒𝑤 𝐴𝑟𝑟𝑎𝑦𝐿𝑖𝑠𝑡 <> ( )" 

Table 2. Read and Written Variables in Example 1 (Number of Variable Layers: 2) 

 
2.2.3 Motivation 

While it is possible to locate root causes of some buggy programs with incomplete data flow 

information, it was found that the current approach failed for a large portion of programs in 

the Defects4J dataset. Furthermore, existing tools such as Microbat and DebugPilot allow a 

user to select the number of layers of variables to record. Due to the variation in available 

computational resources, different users might decide to record different number of layers of 

variables during trace generation. This leads to inconsistency in performance in these tools. 

In the scenario where a user decides to record the first layer of variables only, the accuracy of 

root cause locating is limited, and the effectiveness of the tools is restricted.  

 

In order to improve the accuracy in root cause locating and the consistency in performance of 

the existing tools, it is necessary to develop a technique that recovers data dependency with 

limited and varying amount of available variable information. 

 

 

 

 

 



 10 

2.3 Potential Solutions and Design Decisions 
2.3.1 Comparison of Variables 

Description of Approach 

A source of the data dependency missing problem is that variables modified by third party 

libraries are not recorded in the written variable set at a given step. A naïve approach of 

solving this problem is by comparing the variables before and after a library method is 

invoked. Since two versions of a variable share the same address, the only way to compare 

them is through their values. Before a method invocation, the values of all the relevant 

variables should be stored. Later, these stored values will be compared with the variable 

values after method invocation. 

 

Problems 

A major problem with this solution is the high memory consumption associated with variable 

value recording. An instance of an object in Java contains fields, which could also have 

composite types and could be expanded further. To identify the modified fields, it is 

necessary to record all layers of fields within a variable, which is expensive in practice. If the 

first few layers of a variable are stored, there is a potential that some fields are modified but 

not detected. Therefore, this naïve approach is unable to fully recover missing data 

dependencies when memory is limited. 

 

2.3.2 Data Flow Analysis 

Description of Approach 

The second attempt to solve this problem was through classic static program analysis 

techniques such as data flow analysis. In contrast with the traditional data flow analysis (Aho 

et al., 2007) which starts the analysis from the beginning of a program, this approach follows 

the back-to-forth direction in backtracking debugging. Similar to data flow analysis, a 

Program Dependence Graph (PDG) first needs to be constructed. Given output value of the 

program and ground truth values, data flows are approximated in the backward direction on 

the PDG. The domain and range of variable values are computed, and the data flows with 

contradiction in values will be eliminated. In the end, the data flows left are the recovered 

data flows. A more detailed explanation has been included in Appendix A. 
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Problems 

While the method described could potentially recover all the data flows in a program, there 

are a few problems in practice. Firstly, constructing a PDG involves analysing the source 

code of the whole program, which introduces additional overhead. Secondly, the process of 

approximating variable values on a PDG has similar time and space complexity as executing 

the whole program, especially when accurate data dependencies are required. As a result, this 

approach was not adopted, and the solution should be utilizing the execution trace. 

 

2.3.3 Enhanced Instrumentation 

Description of Approach 

Another attempt to recover the data dependencies is through instrumenting the third-party 

libraries. In addition to the existing instrumentation algorithm, which collects execution 

information, a switch is added as a global variable. The status of this switch is controlled by 

the status of the program. The switch is on when the program starts executing, and is off 

when the program finishes running and the procedures for launching the UI and automated 

debugging start. In the libraries, the inserted instructions for collecting execution information 

will only be executed when the switch is on.  

 

 
Figure 3. A Segment of Decompiled Code after Instrumentation 
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Figure 3 shows an example of enhanced instrumentation. For illustration purpose, the Java 

code in the figure was obtained by decompiling the bytecode after instrumentation. Note that 

the code segment in Figure 3 is incomplete, for a complete version please refer to Appendix 

B. In this example, the 𝑐ℎ𝑎𝑟𝐴𝑡 method from the java.lang.String class has been instrumented. 

$𝑠ℎ𝑜𝑢𝑙𝑑𝐸𝑥𝑒𝑐𝑢𝑡𝑒 is the switch that controls whether the instrumented version should be 

executed.  

 

Problems 

The enhanced instrumentation approach also suffers from high computational cost. Since the 

instructions for collecting execution information are inserted before step in the execution, the 

length of bytecode after instrumentation is a few times longer than the original bytecode. This 

slows down the execution significantly, especially when frequently invoked JDK methods are 

instrumented. Another problem with this approach is that the inserted instructions are usually 

calling predefined static methods to collect execution information, which are also written in 

Java. However, since JDK methods are also instrumented, they will invoke the static 

methods. This causes infinite loops as the JDK methods and the information collecting 

methods invoke each other. Therefore, instrumenting the third-party libraries will cause stack 

overflow problems during execution, and this approach is unable to solve the problem. 

 

2.4 Solution 
2.4.1 Overview 

As explained in section 2.2.2, the reasons of missing data dependencies at step 𝑠 are 

incomplete sets 𝑟(𝑠) and 𝑤(𝑠). Thus, the task of recovering missing data dependencies can 

be simplified into identifying critical variables that are not captured during trace generation. 

This could be because of incomplete instrumentation and partial recording of variable 

information. 

 

To address the task of identifying critical variables, a solution leveraging LLM was proposed. 

With the capability of LLM in understanding the code, the execution details of a library 

method call could be inferred. During trace generation, method invocations without 

instrumentation are identified. The next step in the workflow is to generate a prompt 

according to the format developed through prompt engineering. After the prompt is sent to a 
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LLM and a response is received, the last step is to understand the response and map the 

information to the variables on the execution trace. 

 

 
Figure 4. Architecture of Query Controller 

 

Figure 4 shows the overall architecture of this solution. The Execution Tracer is responsible 

for collecting information during execution. The main contribution of this project is the 

Query Controller. The three components in the Query Controller correspond to the Prompt 

Engineering, Querying, and Variable Mapping procedures in the workflow. 

 

2.4.2 Query Controller 

Query Request Generator 

The Query Request Generator is responsible for the Prompt Engineering step. It retrieves 

information from the Execution Tracer and uses this information to generate a LLM prompt. 

The main challenges for this component are the selection and retrieval of relevant 

information from the program, and construct a concise and informative prompt so that the 

LLM is able to return interpretable variable information. 

 

Querier 

The Querier is responsible for the Querying step. It acts as an interface between the Model 

API and the rest of the components in the Query Controller. In the proof-of-concept tool 
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implemented as part of this FYP, ChatGPT 3.5 API was adopted. However, the architecture 

shown in Figure 4 supports easy migration from ChatGPT 3.5 to other LLMs. Different 

queriers can be implemented to communicate with different LLMs. 

 

Query Response Processor 

The Query Response Processor is responsible for the Variable Mapping step. It parses a 

response provided by the Querier and maps the information in the response to the variables 

on the execution trace. The main challenges associated with this component is the 

interpretation of LLM response and map the retrieved information in natural language to 

variables on an execution trace. 

 

2.4.3 LLM Leveraged Data Dependency Recovery - Version 1 

Observations 

In Java, built-in classes like java.lang.String are immutable, which means that once created, 

their values cannot be modified. In contrast, mutable classes like java.util.ArrayList provide 

APIs to modify its internal fields. Only mutable types suffer from the missing data 

dependency problem. It was observed that common mutable classes usually contain an 

internal data structure to store elements. For example, java.util.ArrayList has an array called 

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 and java.util.HashMap contains an array of java.util.HashMap$Node called 

𝑡𝑎𝑏𝑙𝑒. 

 

According to section 2.1.4, a critical variable 𝑣. 𝑓 is the written field of a variable 𝑣 that is 

not written at the outermost layer. In the examples mentioned above, the internal arrays are 

not directly written. Instead, their internal elements are written. Thus, the elements are the 

critical variables, and the internal data structure that stores these elements is referred to as a 

critical data structure. For example, in a java.util.ArrayList 𝑙, 𝑙. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] is a 

candidate of critical variable since it might have been written by a step, while 

𝑙. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 is a critical data structure that is not directly written. 

 

Prompt Engineering 

As mentioned in section 2.4.1, the problem of recovering missing data dependencies can be 

solved by identifying missing critical variables. The first version of the prompt attempts to 

first identify the critical data structure, then locate the critical variable by inferring a position 
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in the critical data structure. The information about the invoked method is send to the LLM as 

a request, and information about the critical data structure and position containing the critical 

variable should be returned as a response. 

 

Since the default LLM responses are in natural language, it is difficult to map them to 

variables on the trace. Therefore, a fixed format of response is defined as follows: 

 

 

The meanings and values of the tags are explained below: 

< 𝒎𝒆𝒕𝒉𝒐𝒅 𝒕𝒚𝒑𝒆 >: Whether a line of code reads or writes values in the invoking object. It 

can take values from < 𝑔𝑒𝑡/𝑠𝑒𝑡 >. If a method reads values only, i.e. < 𝑔𝑒𝑡 >, the tags 

afterward are not analyzed. 

<method action>: The type of operation completed by the line of code. It can take values 

from < 𝑎𝑑𝑑/𝑟𝑒𝑚𝑜𝑣𝑒/𝑟𝑒𝑝𝑙𝑎𝑐𝑒 >. 

<name of internal array>: The name of the internal array used to store elements in the 

invoking object. 

<index>: The range of positions being modified in the internal array that stores the elements. 

It can take values from < 𝑠𝑡𝑎𝑟𝑡/𝑒𝑛𝑑/𝑎𝑙𝑙/𝑖𝑛𝑑𝑒𝑥/𝑘𝑒𝑦 >. Where < 𝑠𝑡𝑎𝑟𝑡/𝑒𝑛𝑑/𝑖𝑛𝑑𝑒𝑥 > 

represents a single position in data structures that have an ordering. < 𝑘𝑒𝑦 > represents a 

single position in data structures whose elements are retrieved by keys, such as maps and 

sets. < 𝑎𝑙𝑙 > represents that all the elements in the data structure have the potential of being 

written, for example, in the worst case of insertion into a priority queue, the positions of all 

the elements can be changed.  

 

Note that in the implementation of an operation, there could be other positions in the critical 

data structure being written. For example, when adding an element to 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 in 

java.util.ArrayList, if 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 is full, more space will be allocated. However, only 

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[𝑖], where 𝑖 is the index of the added element, is considered a critical variable. 

 

To get response for an invoked method, the method signature is included in the prompt. In 

addition, an abstract code segment is provided. The code segment is not the actual source 

code, instead, it is inferred from the method signature. For example, from signature 

“java.util.HashMap#forEach(Ljava/util/function/BiConsumer;)V”, code segment 

< 𝑚𝑒𝑡ℎ𝑜𝑑 𝑡𝑦𝑝𝑒 >< 𝑚𝑒𝑡ℎ𝑜𝑑 𝑎𝑐𝑡𝑖𝑜𝑛 >< 𝑛𝑎𝑚𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑟𝑟𝑎𝑦 >< 𝑖𝑛𝑑𝑒𝑥 >  



 16 

ℎ𝑎𝑠ℎ𝑚𝑎𝑝. 𝑓𝑜𝑟𝐸𝑎𝑐ℎ(𝑏𝑖𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟) can be extracted. The question about a method is 

formatted as follows: 

 

 

For the example mentioned above, the expected output is < 𝑠𝑒𝑡 >< 𝑟𝑒𝑝𝑙𝑎𝑐𝑒 >< 𝑡𝑎𝑏𝑙𝑒 ><

𝑎𝑙𝑙 >. 

 

The prompt is composed of the explanation of the response format, some examples, and the 

method being queried. The format of the prompt is shown below, a complete prompt prefix 

with the actual examples used is included in Appendix C. 

 

 

 

 

 

 

“ 

Return in the following format: <method type><method action><name of internal array><index>. 

<method type> can take values from <get/set>, it represents whether the line of code gets or sets 

values in the invoking object. When a method is <get>, the tags afterward are not needed. 

<method action> can take values from <add/remove/replace>, it represents the type of operation 

done by the line of code. When a method is <remove>, the tags afterward are not needed. 

<name of internal array> represents the name of the internal array used to store elements in a data 

structure. 

<index> can take values from <start/end/all/index/key>, they represent the range of positions 

being modified in the internal array that stores the elements. 

 

For example: 

{method 1} with signature {signature 1}:<response 1>, 

{method 2} with signature {signature 2}:<response 2>, 

… 

 

Then 

{method queried} with signature {signature queried}: 

” 

{𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝑐𝑜𝑑𝑒} 𝑤𝑖𝑡ℎ 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 {𝑚𝑒𝑡ℎ𝑜𝑑 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒} 
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Variable Mapping 

The following algorithm is applied to interpret query response and infer critical variables: 

Given a step 𝑠 that invokes a library method, where the invoke object is variable 𝑣. 

1. Trim response and extract method type 𝑚𝑇, method action 𝑚𝐴, name of critical 

data structure 𝐷𝑆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , and position 𝑝𝑜𝑠. 

2. If 𝑚𝑇 == 𝐺𝐸𝑇, terminate. 

3. If 𝑚𝑇 == 𝑆𝐸𝑇 

3a. If 𝑚𝐴 == 𝐴𝐷𝐷/𝑅𝐸𝑀𝑂𝑉𝐸, record 𝒗. 𝒔𝒊𝒛𝒆 as a critical variable. 

3b. If 𝑝𝑜𝑠 == 𝑆𝑇𝐴𝑅𝑇/𝐸𝑁𝐷/𝐼𝑁𝐷𝐸𝑋/𝐾𝐸𝑌, record 𝒗. 𝑫𝑺𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍[𝒑𝒐𝒔] as a 

critical variable and terminate. 

3c. If 𝑝𝑜𝑠 == 𝐴𝐿𝐿, record 𝒗. 𝑫𝑺𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍[𝒊] for 𝑖 in range [0, 𝑣. 𝐷𝑆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 . 𝑙𝑒𝑛𝑔𝑡ℎ), 

terminate. 

 

The above algorithm extracts a set of critical variables 𝑆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  from the response. The 

variables in the form of natural language are mapped to the variables on the execution trace 

through the following algorithm: 

Given set of critical variables 𝑆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = {𝑣𝑁𝐿𝑖 | 𝑖 ∈ |𝑆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙|}, where 𝑣𝑁𝐿𝑖 is a variable with 

representation in natural language, and the invoke object 𝑣 after method invocation.  

For each 𝑣𝑁𝐿𝑖  in 𝑆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙: 

1. Retrieve the first level field 𝑓𝑁𝐿𝑖 of 𝑣𝑁𝐿𝑖 (“𝑠𝑖𝑧𝑒” or the name of the critical data 

structure). 

2. If the set of first level fields of 𝑣 doesn’t contain a field with name 𝑓𝑁𝐿𝑖, continue 

to check 𝑣𝑁𝐿𝑖+1. 

3. Else, retrieve 𝑣. 𝑓𝑖, which has name 𝑓𝑁𝐿𝑖. 

3a. If 𝑓𝑁𝐿𝑖 == "𝑠𝑖𝑧𝑒", record 𝑣. 𝑓𝑖 and continue to check 𝑣𝑁𝐿𝑖+1. 

3b. Else, retrieve the position 𝑝𝑜𝑠𝑖 from 𝑣𝑁𝐿𝑖, then record 𝑣. 𝑓𝑖[𝑝𝑜𝑠𝑖]. Continue to 

check 𝑣𝑁𝐿𝑖+1. 

 

Performance Optimization 

Since this version of the prompt involves abstract code segment instead of the actual source 

code, the query responses can be stored to avoid duplicate queries of the same method.  
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Limitations 

Although the first version of the solution could recover missing critical variables for common 

data structures, there are other mutable classes that might not contain an array as a critical 

data structure. For example, java.util.LinkedList is a commonly used data structure in Java, 

but it uses linked instances of java.util.LinkedList$Node to store the items instead of an array.  

Furthermore, this prompt only supports instance methods that write to the fields of the invoke 

object. However, there exists class methods that write to the fields of one or more parameters. 

Therefore, a more general prompt should be designed.  

 

2.4.4 LLM Leveraged Data Dependency Recovery - Version 2 

Observations 

Based on the limitations of Version 1, it is necessary to include the structure of the variable of 

interest in the prompt. This allows the LLM to learn the structure and infer the correct critical 

variable. In addition, the updated solution should be able to query multiple variables in the 

same request. 

 

Prompt Engineering 

In the second version of the prompt, a variable has the following format: 

 

 

Where 𝑣𝑎𝑟_𝑣𝑎𝑙𝑢𝑒 includes the internal fields of the variable, and each field is also a variable 

that follows this format. The natural language representation of the outermost variable is 

obtained in a recursive way. The recursion stops when the current variable has primitive type, 

or is the last layer of variable recorded. 

 

The response is designed to include multiple critical variables at once: 

 

 

Where each variable is represented by its variable name and the names of its ancestors. The 

natural language representation of a critical variable is 

 

 

 

{𝑛𝑎𝑚𝑒: 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒: 𝑣𝑎𝑟_𝑡𝑦𝑝𝑒, 𝑣𝑎𝑙𝑢𝑒: 𝑣𝑎𝑟_𝑣𝑎𝑙𝑢𝑒}  

< 𝑓𝑖𝑒𝑙𝑑1_𝑣𝑎𝑟_𝑛𝑎𝑚𝑒 >; < 𝑓𝑖𝑒𝑙𝑑2_𝑣𝑎𝑟_𝑛𝑎𝑚𝑒 >; . . . ; < 𝑓𝑖𝑒𝑙𝑑𝑛_𝑣𝑎𝑟_𝑛𝑎𝑚𝑒 >  

< 𝑙𝑎𝑦𝑒𝑟 1 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒#𝑙𝑎𝑦𝑒𝑟 2 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒# … #𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒 >  
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Note that the request and response use different ways to represent variables. In the request, a 

variable representation contains name, type, and its value before method invocation. On the 

other hand, the response contains critical variables, which could refer to a variable in the 

request or a field of the variable. The representation of each critical variable includes the 

names from the outermost layer variable to the critical variable, providing a structure to 

support variable mapping. Consider a java.util.ArrayList 𝑙1 with 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 = [1]. Then 

its natural language representation in the request is 

 

 

After invoking 𝑙1. 𝑎𝑑𝑑(0,3), the following fields are written: 

𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] = 3, 𝑙1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[1] = 1, 𝑙1. 𝑠𝑖𝑧𝑒 = 2 

Thus, the expected output is 

 

The format of the overall prompt is as follows: 

{ name: 𝑙1, type: 𝑗𝑎𝑣𝑎. 𝑢𝑡𝑖𝑙. 𝐴𝑟𝑟𝑎𝑦𝐿𝑖𝑠𝑡, value:  

[ { name: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎, type: 𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝑂𝑏𝑗𝑒𝑐𝑡[], value:  

[ { name: 𝑐𝑜𝑚/𝑚𝑦𝑐𝑜𝑚𝑝𝑎𝑛𝑦/𝑎𝑝𝑝/𝐴𝑝𝑝𝑇𝑒𝑠𝑡{103,151}𝑙1 − 1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0],  

     type: 𝑗𝑎𝑣𝑎. 𝑙𝑎𝑛𝑔. 𝐼𝑛𝑡𝑒𝑔𝑒𝑟, value: 1 }; ]  

   }; 

  { name: 𝑠𝑖𝑧𝑒, type: 𝑖𝑛𝑡, value: 1 }; ] 

} 

< 𝑙1#𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎#𝑐𝑜𝑚/𝑚𝑦𝑐𝑜𝑚𝑝𝑎𝑛𝑦/𝑎𝑝𝑝/𝐴𝑝𝑝𝑇𝑒𝑠𝑡{103,151}𝑙1 − 1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[0] >; 

< 𝑙1#𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎#𝑐𝑜𝑚/𝑚𝑦𝑐𝑜𝑚𝑝𝑎𝑛𝑦/𝑎𝑝𝑝/𝐴𝑝𝑝𝑇𝑒𝑠𝑡{103,151}𝑙1 − 1. 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎[1] >; 

< 𝑙1#𝑠𝑖𝑧𝑒 > 
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Variable Mapping 

Given response in the format 

< 𝑙𝑎𝑦𝑒𝑟 1 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒#𝑙𝑎𝑦𝑒𝑟 2 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒# … #𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒 > 

a set of critical variables 𝑆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  with natural language representation can be extracted. 

The following algorithm can then be applied to perform variable mapping: 

Given a set of critical variables 𝑆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  with natural language representations, and a set of 

relevant variables 𝑆𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡  from the execution trace. 

For each variable 𝑣 in 𝑆𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 , and each critical variable 𝑣𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 in 𝑆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 : 

1. Represent 𝑣 as a tree of fields 𝑇𝑣, and represent 𝑣𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 as a path within tree of 

fields 𝑃𝑣_𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 . 

2. In 𝑇𝑣, search for 𝑃𝑣_𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 . Record the field at end of the path as the critical 

variable. 

 

Performance Optimization 

Since execution information is included in this version of the prompt and the response is 

specific to the request, the critical variables cannot be stored and reused. However, when a 

response indicates that a method doesn’t write value to any fields involved, the method 

signature can be recorded. In the future, these stored methods will not be queried. 

 

 

 

“ 

Let {name:var_name,type:var_type,value:var_value} represent a variable. Return the fields in 

var_value that are modified. In your response, do not explain and return strictly in this 

format:<field1_var_name>;<field2_var_name>;...;<fieldn_var_name> 

 

e.g., Given variable {example variable} After calling {code} once, the following fields of 

{variable name} are modified:<critical variable 1 name>;<critical variable 2 name>;… 

 

Then 

Given variables {queried variable 1} {queried variable 2} … After calling {code} once, the 

following fields of {queried variable 1 name}, {queried variable 2 name}, … are modified: 

” 
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2.5 Evaluation 
2.5.1 Defects4J Statistics 

In this project, the dataset Defects4J (Just et al., 2014) is used. The performance of 

DebugPilot on Defects4J is illustrated in Figure 5. In total, there are 841 programs in 

DebugPilot.  

 

The detailed explanation of each segment is as follows: 

Debug Success: Execution trace is generated, and root cause can be located. 

Debug Failure: Execution trace is generated but root cause cannot be located. 

No Fault / Root Cause Detected: While searching for the root cause, the fault revealing step 

is the starting point, and the root cause is the target. This exception is thrown when execution 

trace is generated, but either the fault or the root cause cannot be detected before the 

debugging session starts. 

Runtime Exception: The exception is thrown when the trace is not generated due to 

exception during the execution of the program. 

Trace Length Exceeds Limit: The exception is thrown when the trace is not generated 

because it will exceed the limit (100,000 steps). 

Timeout: The exception is thrown when the trace is not generated because it exceeds the 

time limit (10 minutes). 

Other Exceptions: Other exceptions that cause trace generation to fail. 

 
Figure 5. Microbat Simulation Experiment Result 
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2.5.2 Benchmark 

To examine the effectiveness of the proposed solution, the critical variables of 4 

representative data structures in Java are hard coded to serve as a benchmark. Each public 

method in these classes is hard coded with the expected output according to the response 

format of prompt version 1. In total, 34 methods from java.util.ArrayList, java.util.HashMap, 

java.util.HashSet, java.util.Queue that writes to variables were hardcoded and tested. 

 

2.5.3 Experiment Design 

Simulation experiment was conducted on the 114 programs where trace could be generated, 

but root cause cannot be located. Let 𝑛 denote the number of variable layers. Note that among 

these 114 programs, the root cause cannot be located when 𝑛 is 1, 2, or 3. In the simulated 

debugging experiment, time limit for each debugging session is set to be 10 minutes. It was 

found that a longer execution trace involves more LLM queries, due to time and cost 

considerations, the maximum length of trace is set to be 10,000 for 𝑛 = 3 and 20,000 for 𝑛 =

1. ChatGPT 3.5 API was used as the LLM API in this experiment. 

 

2.5.4 Effectiveness in Addressing Missing Data Dependency due to Incomplete 

Instrumentation 

Experiment results when n = 3 are summarized in the table below: 

 Debugging 

Success 

Trace Generation 

Success 

Percentage of 

Success 

Average Trace 

Generation Time (s) 

Benchmark 19 93 20.43% 19.00 

Prompt V1 31 88 35.23% 29.21 

Prompt V2 33 65 50.77% 128.44 

Table 3. Microbat Experiment Result with Data Dependency Recovery (n=3) 
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Figure 6. Microbat Experiment Result Distribution with Data Dependency Recovery (n=3) 

 
 Debugging 

Success 

Trace Generation 

Success 

Percentage of 

Success 

Average Trace 

Generation Time (s) 

Benchmark 12 65 18.46% 15.65 

Prompt V1 22 65 33.85% 15.20 

Prompt V2 33 65 50.77% 128.44 

Table 4. Subset of Microbat Experiment Result with Data Dependency Recovery (n=3) 

As shown in Table 3, after recovering data dependencies with the proposed solution, root 

cause can be located in more programs in Defects4J. In addition, both versions of the solution 

perform better than the benchmark in number of successes in debugging and percentage of 

success. While Prompt V2 has similar number of successes in debugging as V1, it has a 

percentage of success of 50.77%.  

 

Although Prompt V2 times out for 23 programs, among the programs where traces are 

successfully generated, V2 of the solution is capable of recovering more data dependencies 

and helping in locating root cause in more programs. This is because V2 handles class level 

methods as well as classes with different inner structures. As shown in Table 4, only the 65 

programs that V2 can generate trace successfully are considered, and V2 has the best 

performance among the three groups. 
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The main problem with V2 is its runtime overhead. It can be seen from Table 3 and Table 4 

that the runtime overhead of V1 is small compared to V2. Due to the nature of Prompt V1, 

the LLM response could be stored and reused. However, response for Prompt V2 are not 

general enough to be stored. In other words, Prompt V1 only involves static program 

analysis, while Prompt V2 involves execution information, which means that it adopts a 

dynamic program analysis approach. 

 

2.5.5 Effectiveness in Addressing Missing Data Dependency due to Partial Recording 

of Variable Information 

When n = 1, benchmark and prompt version 1 would not be able to recover the data 

dependencies, because the inner structure of the variables are not captured on the trace. 

Experiment results of prompt version 2 are summarized in the table below: 

 Debugging 

Success 

Trace Generation 

Success 

Percentage of 

Success 

Average Trace 

Generation Time (s) 

n=1 30 88 34.09% 117.15 

n=3 33 65 50.77% 128.44 

Table 5. Microbat Experiment Result with Data Dependency Recovery V2 (n=1 and n=3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Microbat Experiment Result Distribution with Data Dependency Recovery V2 

(n=1 and n=3) 
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From Table 5, it can be seen that Prompt V2 is able to recover data dependencies with limited 

information about the variables. By setting n to 1, the time taken for trace generation is 

reduced, thus more programs can be tested. However, the success rate is lower when n = 1 

compared to n = 3. This could be because when less information about the variables are 

provided to the LLM, it is harder for the LLM to infer the inner structure of the variables. 

Thus, the response might not include all the critical variables. 

 

2.6 Limitations and Future Work 
As mentioned in section 2.5.4, the main drawback with the proposed solution is the runtime 

overhead to query a remote LLM such as ChatGPT. When the trace length increases, the 

debugging session also becomes expensive since a large number of ChatGPT queries is 

required. 

 

The future work could focus on reducing the cost of the current solution from the 

perspectives of reducing the number of queries and reducing the cost of each query. To 

reduce the number of queries, an on-demand approach of querying could be implemented, 

where critical variables are recovered only when needed. In addition, the prompt engineering 

could be improved such that each query contains information of multiple execution steps. To 

reduce the cost of each query, the future work could attempt to train a local deep learning 

model and query from this model instead of ChatGPT.  

 

Furthermore, this project focuses on increasing the number of usable programs in Defects4J. 

The future work should study the effects of recovering data dependencies on reducing the 

length of path from the fault revealing step to the root cause during a debugging session. Due 

to the high cost of ChatGPT API, only 114 programs were tested. After the future work 

reduces the cost of the approach, it should be tested on an expanded dataset. Mutation on the 

existing programs could be performed to control and test data dependency recovery on a 

larger set of data structures. 
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3 Contributions to DebugPilot 

3.1 Inputs and Outputs Detection 
3.1.1 Definitions 

Input: an input is a variable that is guaranteed to be correct based on the user’s knowledge. 

Output: an output is an incorrect variable during the execution. 

 

3.1.2 Problem Statement 

At the beginning of a debugging session with DebugPilot, the user is required to select the 

outputs. In an earlier version of DebugPilot, selection of the inputs was also required. As a 

result, there was a need to develop automatic detection of inputs and outputs (IO) to model 

user behaviour during the simulation experiments.  

 

To control the level of familiarity on different programs, it was assumed that a user has 

complete knowledge about the program that he is debugging. Thus, both a buggy program 

and a program with the bug fixed were executed, with the fixed program representing the 

user’s knowledge. By comparing the buggy and correct execution traces, the first discrepancy 

between the traces from the back was taken as the node containing the output. The output, 

either a variable or a conditional branch, was then obtained from this node. After this, the 

correct variables along the trace were recorded as the inputs. 

 

This implementation has the limitation that the IO detected were sometimes inaccurate or 

threw exceptions. Thus, the existing algorithm for IO detection and the failing scenarios 

should be studied. The algorithm should then be improved to reduce the exceptions thrown. 

 

Furthermore, IO Detection was repeated each time an experiment was conducted. However, 

the results of IO Detection on deterministic buggy programs from the dataset were fixed, 

making this repetition unnecessary. Therefore, support for storing and parsing the detected IO 

helps to save time and computational resources during experiments. In addition, storing the 

IO to a file makes it possible to manually correct detected IO that is inaccurate. 
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3.1.3 Storage and Correction of Detected Inputs and Outputs 

To address the above-mentioned problems, a solution that involves storing the detected IO 

and providing support for manual correction was proposed. The architecture of the enhanced 

IO Processor is shown in Figure 1. 

 

 
Figure 8. IO Processor Architecture 

 

The IO Processor supports accessing IO obtained by either reading from the IO file or 

detecting from the buggy execution trace. In addition, it provides an interface for manual 

correction of the stored IO that are deemed to be inaccurate. 

 

As shown in Figure 8, the IO Processor has three components: IO, IO Detection, and IO 

Storage. They correspond to the InputsAndOutput, IODetector, and StoredIOProcessor 

classes, and have the relationship as shown in Figure 9. This design decision of separating 

IODetector and StoredIOProcessor classes follows the Single Responsibility Principle, which 

makes the IO Processor easily maintainable and extensible. 

 

In addition, the IOSelectionHandler class is the interface for manual correction of the inputs 

and outputs, and it acts as an IO Updater in Figure 8. It also provides an option to select the 

outputs only, in this case, the inputs will be detected by the IODetector based on the selected 

outputs. The selected IO are passed to StoredIOProcessor, which updates the existing IO file. 

On the other hand, the ProjectsDebugRunner class is responsible for running the automated 

experiments, that is, it acts as an IO Consumer. It calls StoredIOProcessor class to retrieve the 
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stored IO. If such information doesn’t exist, it calls IODetector to detect IO and stores the 

detected IO by StoredIOProcessor. The IOSelectionHandler practices Abstraction and 

Encapsulation by providing an interface to IO correction. In this way, the program becomes 

more flexible while protecting the IO file from unexpected modification. 

 

 
Figure 9. IO Processor Class Diagram 

 

3.1.4 Updated Algorithm for Output Detection 

To detect the output, the existing algorithm takes the first node from the back of the buggy 

trace that is different from the correct trace. This works when the output is a variable. 

However, when the error is caused by execution of a wrong control branch, the fault-

revealing step should be the first condition result leading to this execution instead of the last 

executed step. To correct this, the algorithm of output detection was updated such that once a 

wrong control flow is detected, search the trace through control dominance relations until the 

first problem-causing condition is found. This condition is then taken as the wrong output of 

the buggy program. Such modification could be made because of the assumption that the user 

has complete knowledge about the code and knows which condition leads to the wrong 

control flow. 
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The updated algorithm for output detection is as follows: 

Given a buggy trace 𝑇𝑏𝑢𝑔𝑔𝑦 and a correct trace 𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡. 

1. Start from the last node in 𝑇𝑏𝑢𝑔𝑔𝑦 . 

2. Traverse through the trace, compare each node 𝑁𝑏𝑢𝑔𝑔𝑦  on 𝑇𝑏𝑢𝑔𝑔𝑦 with the 

corresponding node 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡  on 𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡 until one of the conditions is met: 

2a. If 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡  cannot be found: 

 // 𝑁𝑏𝑢𝑔𝑔𝑦  is on a wrong control flow. 

  Search for and return the first wrong condition result that leads to this flow. 

       2b. If 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡  is found on 𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡, and 𝑁𝑏𝑢𝑔𝑔𝑦 contains wrong variables: 

  Return these wrong variables as outputs. 

 

3.1.5 Evaluation 

The original algorithm threw IO Detection Exception when there are preceding steps between 

the conditional step and the last executed step. Since this conditional branch should not be 

executed, these preceding steps cannot be found on the correct trace. IO Detection Exceptions 

were thrown because the input detection compares the traces from the output node, but some 

nodes from the buggy trace cannot be found on the correct trace. 

 

To evaluate the effectiveness of the enhancements described in Section 3.1.3 and 3.1.4, IO 

Detection was performed on 416 buggy programs from Defects4J (Just et al., 2014). Before 

these changes were made, DebugPilot threw IO Detection Exception on 89 programs, 

indicating failures in detection of inputs or outputs. The enhancements reduced this number 

to 9, significantly increased the number of usable bugs for the simulated experiments. 

 

3.2 Formulation of Suspiciousness Function 
3.2.1 Definitions 

The definitions of Read and Written Variables are included in Section 2.1.2. 

 

3.2.2 Problem Statement 

In DebugPilot, the concept of suspiciousness was introduced to differentiate between possible 

paths originating from the output node. To approximate the suspiciousness of a written 

variable, the following equation was formulated: 
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𝑠𝑢𝑠(𝑣𝑎𝑟𝑤) = 𝑠𝑢𝑠(𝑠) + 𝑠𝑢𝑠(𝑠, 𝑠𝑐) + ∑ 𝑠𝑢𝑠(𝑣𝑎𝑟𝑟)
𝑣𝑎𝑟𝑟∈𝑉𝑟

 

where 𝑠 is a writing step with control dominator 𝑠𝑐, 𝑉𝑟 is the set of read variables, each read 

variable represented by 𝑣𝑎𝑟𝑟, and 𝑣𝑎𝑟𝑤 is the written variable. The details of computation of 

𝑠𝑢𝑠(𝑠) and 𝑠𝑢𝑠(𝑠, 𝑠𝑐) are omitted here, since they are irrelevant to the work in the report.  

 

The last component is the combined suspiciousness score of read variables, which is a 

summation of the individual scores. The major limitation in this formula is that the combined 

score increases dramatically with increasing number of read variables. As a result, the 

combined score cannot reflect the overall suspiciousness accurately. For example, consider 𝑛 

variables with low and equal suspiciousness. Denote this suspicious score by 𝑠𝑙, and denote 

the combined score as 𝑠1 = ∑ 𝑠𝑢𝑠(𝑣𝑎𝑟𝑟)𝑣𝑎𝑟𝑟∈𝑉𝑟 . Then the combined score is 𝑠1 = 𝑛 ∙ 𝑠𝑙 . If 𝑛 

is large enough, 𝑠1 will be high even though all the variables have low suspiciousness, 

increasing the risk of classifying a correct step as suspicious. 

 

A potential solution of this problem is to use the average score instead, that is, 𝑠2 =
1

|𝑉𝑟|
∑ 𝑠𝑢𝑠(𝑣𝑎𝑟𝑟)𝑣𝑎𝑟𝑟∈𝑉𝑟 . However, this solution has a flaw that variables with different levels 

of suspiciousness have equal weightage. Consider the case where there is one variable with 

high suspicious score and 𝑛 variables with negligible and equal suspicious scores. Denote the 

high and low scores by 𝑠𝐻 and 𝑠𝐿. Then the combined score is 𝑠2 = 1
𝑛+1

(𝑠𝐻 + 𝑛 ∙ 𝑠𝐿), and 

lim
𝑠𝐿→0

𝑠2 = 𝑠𝐻
𝑛+1

. The combined score should be high due to the presence of a highly suspicious 

variable. However, in this example, 𝑠2 evaluates to 𝑠𝐻
𝑛+1

 as 𝑠𝐿 → 0. The combined score 

decreases with increasing 𝑛, eventually leading to classifying a suspicious step as correct. 

 

Since the existing equations suffer from high false positive or false negative rates, it is 

necessary to propose a more reasonable approximation of the combined suspicious score. 

 

3.2.3 Solution 

Instead of the above-mentioned solutions, the following formula was proposed and adopted: 

𝑠𝑢𝑠(𝑣𝑎𝑟𝑤) = 𝑠𝑢𝑠(𝑠) + 𝑠𝑢𝑠(𝑠, 𝑠𝑐) + √ ∑ 𝑠𝑢𝑠(𝑣𝑎𝑟𝑟)2

𝑣𝑎𝑟𝑟∈𝑉𝑟

 



 31 

where the summation was replaced by 𝑠3 = √∑ 𝑠𝑢𝑠(𝑣𝑎𝑟𝑟)2
𝑣𝑎𝑟𝑟∈𝑉𝑟 . 

The inner term ∑ 𝑠𝑢𝑠(𝑣𝑎𝑟𝑟)2
𝑣𝑎𝑟𝑟∈𝑉𝑟  can be considered as a weighted sum of the suspicious 

scores, such that a more suspicious variable contributes more to the overall suspiciousness. 

This addresses the problem with the unweighted average 𝑠2 as described in Section 3.2.2. The 

combined score is 𝑠3 = √𝑠𝐻
2 + 𝑛 ∙ 𝑠𝐿

2 based on the updated equation. Consequently, 

lim
 𝑠𝐿→0

𝑠3 = √𝑠𝐻
2 + 0 = 𝑠𝐻, which means the highly suspicious variable dominates the 

combined score as expected. 

 

Furthermore, by taking the square root of the weighted sum, the problem with 𝑠1 is 

prevented. Consider the example for 𝑠1 described in Section 3.2.2, the combined score is 

updated to be 𝑠3 = √𝑛 ∙ 𝑠𝑙
2 = √𝑛 ∙ 𝑠𝑙, which increases much slower with increasing 𝑛 

compared to the original solution. 

 

In addition, the proposed solution has a comprehensive geometric interpretation. Treat the 

suspicious scores of the read variables as orthogonal vectors, then the combined score 

represents the magnitude of the sum of these vectors. Figure 10 illustrates this geometric 

interpretation with |𝑉𝑟| = 3. 

 
Figure 10. Geometric Interpretation of the Combined Suspiciousness of 3 variables 
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4 Conclusions 
Data Dependency Recovery 

The work has identified the need of recovering missing data dependencies in software 

engineering research. Based on the current trace generation of Microbat, this work has 

identified two sources for the problem of missing data dependencies, namely incomplete 

instrumentation and partial recording of variable values. To address this problem, three 

existing solutions and their limitations have been studied. After this, a solution leveraging 

LLMs with an extensible framework has been proposed. The overall workflow involves 

conversion of execution information to LLM prompt, invocation of LLM APIs, and 

conversion of natural language representations of variables to variables on an execution trace. 

Under this framework, a benchmark with hard coded LLM responses and two versions of the 

solution have been implemented and evaluated. By comparing the results, the effectiveness of 

the proposed solution on addressing the two sources of missing data dependencies has been 

demonstrated.  

 

Based on the analysis of runtime overhead of the proposed solution, a potential future 

research direction of reducing the cost of LLM queries used in this solution has been pointed 

out. From the perspectives of reducing the number of queries and reducing the cost of each 

query, potential future works involve on-demand querying and utilizing local deep learning 

models. In addition, this work has pointed out the need of scaling up the experiment through 

test case mutation after cost is reduced. 

 

Contributions to DebugPilot 

In this work, DebugPilot has been enhanced and tested in different ways. First, the IO 

Detection for conducting simulation experiments was improved. The updated algorithm for 

output detection reduced the number of programs throwing IO Exceptions, significantly 

increased the number of usable bugs for simulation experiments. The storage of automatically 

detected IO not only save time and computational resources during the simulation 

experiments, but also enabled manual correction of inaccurate detection. 

 

Apart from efforts on improving the simulation experiments, the computation of the 

combined suspicious score of the read variables has been improved. This enhancement 

addressed the issues of dramatic increase of the score with increasing number of variables 
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and variables with different levels of suspiciousness having the same contribution to the 

overall score. The proposed solution also has a geometric interpretation that demonstrates the 

reasonableness of this combined score. 
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Appendix A 
 

 

A data flow can be represented as a series of functions 𝑓1, 𝑓2, …, 𝑓𝑛 

𝑥 = 𝑓1−1 ∘ … ∘ 𝑓𝑛−1−1 ∘ 𝑓𝑛−1 (𝑦) 

Algorithm: 

1. Represent each node as an inversible function 𝑓 

2. Given the output 𝑦 (execution result), find the input domain 𝑥 

3. If 𝑥 is different from ground truth 𝑥′, eliminate this data flow 
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Appendix B 
 

charAt method source code: 

 
    public char charAt(int index) { 
        if (isLatin1()) { 

            return StringLatin1.charAt(value, index); 

        } else { 

            return StringUTF16.charAt(value, index); 

        } 

    } 

 

Decompiled charAt method after enhanced instrumentation: 

 
   public char charAt(int arg0) { 

      boolean $shouldExecute = 

ExecutionTracer._shouldExecuteInjectedCode(); 

      if (!$shouldExecute) { 

         if (arg0 >= 0 && arg0 < this.value.length) { 

            return this.value[arg0]; 

         } else { 

            throw new StringIndexOutOfBoundsException(arg0); 

         } 

      } else { 

         String $className = "java.lang.String"; 

         String $methodSignature = "java.lang.String#charAt(I)C"; 

         Object[] $tempVar3 = new Object[]{arg0}; 

         IExecutionTracer $tracer = ExecutionTracer._getTracer(false, 

$className, $methodSignature, 657, 660, "arg0", "I", $tempVar3); 

         $tracer._hitLine(657, $className, $methodSignature, 1, 0, 

"iload_1[27](1):iflt[155](3) -> 

13:iload_1[27](1):aload_0[42](1):getfield[180](3) 

3:arraylength[190](1):if_icmplt[161](3) -> 22:"); 

         if (arg0 >= 0) { 

            char[] var10003 = this.value; 

            $tracer._readField(this, var10003, "value", "char[]", 657, 

$className, $methodSignature); 

            if (arg0 < var10003.length) { 



 x 

               $tracer._hitLine(660, $className, $methodSignature, 2, 0, 

"aload_0[42](1):getfield[180](3) 

3:iload_1[27](1):caload[52](1):ireturn[172](1):"); 

               char[] var10002 = this.value; 

               $tracer._readField(this, var10002, "value", "char[]", 660, 

$className, $methodSignature); 

               char $tempVar2 = var10002[arg0]; 

               $tracer._readArrayElementVar(var10002, arg0, $tempVar2, 

"char", 660, $className, $methodSignature); 

               $tracer._hitReturn(Integer.valueOf($tempVar2), "I", 660, 

$className, $methodSignature); 

               $tracer._hitMethodEnd(660, $className, $methodSignature); 

               return $tempVar2; 

            } 

         } 

 

         $tracer._hitLine(658, $className, $methodSignature, 0, 0, 

"new[187](3) 6:dup[89](1):iload_1[27](1):invokespecial[183](3) 

7:athrow[191](1):"); 

         StringIndexOutOfBoundsException var10000 = new 

StringIndexOutOfBoundsException; 

         Object[] $tempVar1 = new Object[]{arg0}; 

         $tracer._hitInvoke(var10000, 

"java.lang.StringIndexOutOfBoundsException", 

"java.lang.StringIndexOutOfBoundsException#<init>(I)V", $tempVar1, "I", 

"V", 658, $className, $methodSignature); 

         var10000.<init>((Integer)$tempVar1[0]); 

         $tracer._hitMethodEnd(658, $className, $methodSignature); 

         throw var10000; 

      } 

   } 
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Appendix C 
Prompt Version 1 

 
“Return in the following format: <method type><method action><name of internal array><index>. 

<method type> can take values from <get/set>, it represents whether the line of code gets or sets values in the 

invoking object. When a method is <get>, the tags afterward are not needed. 

<method action> can take values from <add/remove/replace>, it represents the type of operation done by the 

line of code. When a method is <remove>, the tags afterward are not needed. 

<name of internal array> represents the name of the internal array used to store elements in a data structure. 

<index> can take values from <start/end/all/index/key>, they represent the range of positions being modified in 

the internal array that stores the elements. 

For example: 

"list.add(object)" with signature "java.util.List#add(Ljava/lang/Object;)V":<set><add><elementData><end>, 

"list.add(int, object)" with signature 

"java.util.List#add(ILjava/lang/Object;)V":<set><add><elementData><index>, 

"list.set(int, object)" with signature 

"java.util.List#set(ILjava/lang/Object;)Ljava/lang/Object;":<set><replace><elementData><index>, 

"list.get(int)" with signature "java.util.List#get(I)Ljava/lang/Object;":<get>, 

"list.remove(int)" with signature 

"java.util.List#remove(I)Ljava/lang/Object;":<set><remove><elementData><index>, 

"hashmap.put(int, object)" with signature 

"java.util.HashMap#put(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;":<set><add><table><key>, 

"hashmap.forEach(biConsumer)" with signature 

"java.util.HashMap#forEach(Ljava/util/function/BiConsumer;)V":<set><replace><table><all>, 

"hashset.add(object)" with signature "java.util.HashSet#add(Ljava/lang/Object;)Z":<set><add><table><key>. 

Then” 

 

Prompt Version 2 

 
“Let {name:var_name,type:var_type,value:var_value} represent a variable. Return the fields in var_value that 

are modified. In your response, do not explain and return strictly in this 

format:<field1_var_name>;<field2_var_name>;...;<fieldn_var_name> 

e.g., Given variable 

{name:l1,type:java.util.ArrayList,value:[{name:elementData,type:java.lang.Object[],value:[{name:com/mycom

pany/app/AppTest{103,151}l1-

1.elementData[0],type:java.lang.Integer,value:1};]};{name:size,type:int,value:1};]} After calling "l1.add(0,3)" 

once, the following fields of "l1" are modified:<l1#elementData#com/mycompany/app/AppTest{103,151}l1-

1.elementData[0]>;<l1#elementData#com/mycompany/app/AppTest{103,151}l1-1.elementData[1]>;<l1#size> 

Then” 


